UC BERKELEY AUTHOR: Ajay Pillarisetti, MT Hernandez, John Balmes, Kirk Smith
DATE OF PUBLICATION: October 2018
REGION: Paraguay
REFERENCE: Tagle M, Pillarisetti A, Hernandez MT, Troncoso K, Soares A, Torres R, Galeano A, Oyola P, Balmes J, Smith KR. Indoor Air. 2018 Oct 19. doi: 10.1111/ina.12513.
SUMMARY/ABSTRACT:In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM2.5 ) and carbon monoxide (CO) in and around the household environment. In July 2016, cross-sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time-integrated samples (24-h) of PM2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG) or electricity to cook. Qualitative and quantitative household-level variables were captured using questionnaires. The average PM2.5 concentration (μg/m3 ) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) were used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM2.5 and CO concentrations (predicted R2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs. This article is protected by copyright. All rights reserved.
ACCESS: Link